(Data in metric tons unless otherwise noted)

Domestic Production and Use: In 2015, three firms recovered zircon (zirconium silicate) from surface-mining operations in Florida, Georgia, and Virginia as a coproduct from the mining and processing of heavy minerals. Zirconium metal and hafnium metal were produced from zirconium chemical intermediates by one domestic producer in Oregon and one in Utah. Typically, zirconium and hafnium are contained in zircon at a ratio of about 50 to 1. Zirconium chemicals were produced by the metal producer in Oregon and by at least 10 other companies. Ceramics, foundry sand applications, opacifiers, and refractories are the leading end uses for zircon. Other end uses of zircon include abrasives, chemicals (predominantly, zirconium oxychloride octohydrate and zirconium basic sulfate as intermediate chemicals), metal alloys, and welding rod coatings. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process industries.

Salient Statistics—United States: Production, zircon (ZrO ₂ content)	<u>2011</u> W	<u>2012</u> W	<u>2013</u> W	<u>2014</u> W	160,000
Imports: Zirconium, ores and concentrates (ZrO ₂ content) Zirconium, unwrought, powder, and waste and scrap Zirconium, wrought Hafnium, unwrought, powder, and waste and scrap	17,200 487 390 10	16,700 279 288 24	8,050 395 321 10	32,800 843 257 21	20,700 1,400 195 55
Exports: Zirconium ores and concentrates (ZrO ₂ content) Zirconium, unwrought, powder, and waste and scrap Zirconium, wrought	15,800 677 1,330	13,000 554 1,250	19,000 600 1,140	4,850 534 913	2,830 470 1,030
Consumption, apparent, zirconium ores and concentrates, (ZrO ₂ content) Prices: Zircon, dollars per metric ton (gross weight):	W	W	W	W	80,000
Domestic ² Imported ³ Zirconium, unwrought, import, France, dollars per kilogra Hafnium, unwrought, import, France, dollars per kilogran		2,650 2,533 91 503	1,050 996 75 578	1,050 1,106 59 561	1,050 1,052 86 608
Net import reliance ⁵ as a percentage of apparent consumption: Zirconium Hafnium	<10% NA	<10% NA	E NA	<50% NA	<25% NA

<u>Recycling</u>: Companies in Oregon and Utah recycled zirconium from new scrap generated during metal production and fabrication and/or from post-commercial old scrap. Zircon foundry mold cores and spent or rejected zirconia refractories are often recycled. Hafnium metal recycling was insignificant.

Import Sources (2011–14): Zirconium mineral concentrates: South Africa, 67%; Australia, 28%; and other, 5%. Zirconium, unwrought, including powder: China, 44%; Japan, 30%; Germany, 20%; France, 4%; and other, 2%. Hafnium, unwrought: France, 47%; Germany, 28%; Australia, 17%; United Kingdom, 5%; and other, 3%.

<u>Tariff</u> : Item	Number	Normal Trade Relations <u>12–31–15</u>
Zirconium ores and concentrates	2615.10.0000	Free.
Germanium oxides and zirconium dioxide	2825.60.0000	3.7% ad val.
Ferrozirconium	7202.99.1000	4.2% ad val.
Zirconium, unwrought and zirconium powder	8109.20.0000	4.2% ad val.
Zirconium waste and scrap	8109.30.0000	Free.
Other zirconium articles	8109.90.0000	3.7% ad val.
Hafnium, unwrought, powder, and waste and scrap	8112.92.2000	Free.

Depletion Allowance: 22% (Domestic), 14% (Foreign).

Government Stockpile: None.

ZIRCONIUM AND HAFNIUM

Events, Trends, and Issues: Domestic mining of zirconium ores and production of concentrates took place at two mines near Stony Creek, VA; one near Starke, FL; and one near Nahunta, GA. Prices for zircon concentrates remained constant throughout the year. U.S. imports of ores and concentrates decreased by about 38% and exports decreased by 42% because end users adjusted to the forthcoming idling of operations in Virginia and commencement of mineral processing operations in Georgia. The operator of the two Virginia mines expected to extract the remaining ore from both mines and complete operations by yearend 2015. The operator of the mine in Georgia was developing a second mine in Brantley County and completed construction of a mineral sand plant near Offerman to process heavy-mineral concentrates from these mines. A fourth company was planning to process tailings from mineral sand mines in New Jersey to produce zircon and titanium concentrates. Construction of a mineral sands concentrates (excluding the United States) was estimated to have decreased by 5% compared with that of 2014. According to the leading world producer, global consumption of zirconium concentrates during the first half of 2015 was essentially unchanged from that in the first half of 2014, and modest year-over-year gains in consumption were expected in the second half of 2015. Heavy-mineral exploration and mining projects were underway in Australia, Madagascar, Mozambique, Sri Lanka, and Tanzania.

<u>World Mine Production and Reserves</u>: World primary hafnium production data are not available. Although hafnium occurs with zirconium in the minerals zircon and baddeleyite, quantitative estimates of hafnium reserves are not available.

	Zirconium mine production (thousand metric tons, gross weight)		Zirconium reserves ⁶ (thousand metric tons, ZrO ₂)		
	<u>2014</u>	2015 ^e			
United States	W	¹ 60		500	
Australia	551	500		51,000	
China	150	140		500	
India	40	40		3,400	
Indonesia	110	110		NA	
Mozambique	51	50		1,100	
South Africa	387	380		14,000	
Other countries	130	130		_7,200	
World total (rounded	d) ⁷ 1,420	1,410		78,000	

<u>World Resources</u>: Resources of zircon in the United States included about 14 million tons associated with titanium resources in heavy-mineral sand deposits. Phosphate rock and sand and gravel deposits could potentially yield substantial amounts of zircon as a byproduct. World resources of hafnium are associated with those of zircon and baddeleyite. Quantitative estimates of hafnium resources are not available.

Substitutes: Chromite and olivine can be used instead of zircon for some foundry applications. Dolomite and spinel refractories can also substitute for zircon in certain high-temperature applications. Niobium (columbium), stainless steel, and tantalum provide limited substitution in nuclear applications, and titanium and synthetic materials may substitute in some chemical processing plant applications. Silver-cadmium-indium control rods are used in lieu of hafnium at numerous nuclear powerplants. Zirconium can be used interchangeably with hafnium in certain superalloys.

^eEstimated. E Net Exporter. NA Not available. W Withheld to avoid disclosing company proprietary data.

¹ Rounded to one significant digit to avoid disclosing company proprietary data.

² Source: Industrial Minerals, yearend average of high-low price range.

³ Unit value based on U.S. imports for consumption from Australia and South Africa.

⁴ Unit value based on U.S. imports for consumption from France.

⁵ Defined as imports – exports.

⁶ See<u>Appendix C</u> for resource/reserve definitions and information concerning data sources.

⁷ Excludes U.S. production.